
Theory of twinning structures in the orthorhombic phase of ferroelectric perovskites

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 4467

(http://iopscience.iop.org/0953-8984/9/21/012)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 08:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/21
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 4467–4482. Printed in the UK PII: S0953-8984(97)76998-4

Theory of twinning structures in the orthorhombic phase
of ferroelectric perovskites

X R Huang, S S Jiang, X B Hu and W J Liu
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing
University, Nanjing 210093, People’s Republic of China
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Abstract. The microstructures of coherent 180◦, 90◦, and 120◦ domain walls in the ortho-
rhombic phase of ferroelectric perovskites have been studied on the basis of Landau–Ginzburg
theory for the first-order phase transitions. It is found that for the space profile of the polarization
within an uncharged wall layer, the normal component always remains zero or constant, while
the component parallel to the wall plane has two kinds of inhomogeneous configuration, one of
the ‘Ising type’ and the other of the ‘Bloch type’. Quasi-one-dimensional analytic solutions for
polarization components, elastic strains, and clamping stresses are obtained for the Ising-type
180◦, 90◦, and 120◦ wall interfaces. The structural characteristics and physical properties of the
Bloch-type walls are also illustrated and discussed. All of the theoretical results are functions
of macroscopic quantities for perovskite crystals, and can be applied to real systems when these
quantities are obtained from experiments.

1. Introduction

Many ferroelectric perovskites, such as BaTiO3 and the KTa1−xNbxO3 (0.05 < x 6 1)
series, exhibit the classical phase transition sequence from the paraelectric cubic phase
to ferroelectric tetragonal, orthorhombic, and rhombohedral phases upon cooling [1–4]. A
common phenomenon of the three ferroelectric phases is the twinning between energetically
equivalent domains. Well known examples are the 180◦ and 90◦ twins in the tetragonal
phase, whose domain morphology and dynamics have been investigated extensively [5–8].
In the orthorhombic phase, the polar axes of a pair of adjoining domains can take any two
of the twelve equivalent〈110〉 directions of the prototypic cubic lattice, which gives rise
to four kinds of twinning structure defined as 180◦, 90◦, 120◦, and 60◦ twins, respectively,
depending on the size (in degrees) of the angle between the two polarization vectors.
Generally, a domain wall (twin boundary) connecting two twinned domains contains excess
energy compared to a single-domain structure, and this energy is minimized when the
polarization vectors are arranged to satisfy∇ · P = 0 within the wall layer. Most domain
walls in ferroelectrics satisfy this condition, and are called ‘uncharged walls’ (charge-neutral
walls) [9, 10]. According to this rule, an uncharged 180◦ wall in an orthorhombic perovskite
is always parallel to the polar axes of the domains separated by the wall. Besides the
charge neutrality condition, the orientations of uncharged 90◦, 120◦, and 60◦ walls also
satisfy strain compatibility between the adjacent domains [11]. For this reason, the 90◦

and 120◦ walls are parallel to{100} and {110} lattice planes, respectively. The 60◦

walls determined by the charge neutrality and strain compatibility are along the{hkk}
lattice planes withh/k = (ea − ec)/2et (ea, ec, and et are the strain components of the
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homogeneous orthorhombic lattice with respect to the cubic lattice; see section 2) [12]. In
the rhombohedral phase, the polar axes are the eight〈111〉 directions, and consequently
180◦, 118◦, and 62◦ twinnings are possible.

Although the theories of twinning rules for ferroic crystals have been well elaborated
[13], an understanding of domain wall structure remains a most important issue in the study
of ferroelectricity at present. In fact, the structure of domain walls plays an essential role in
the ferroelectric behaviours of perovskite and other crystals: (i) the morphology of a domain
is determined by the anisotropy of the wall energy; (ii) the switching of domains in external
(electrical and mechanical) fields is actually realized by the wall motion, i.e. the nucleation
and growth of new domains in the vicinity of the walls; (iii) domain walls are natural
nucleation sites for ferroelectric phase transitions due to their special structure deviating
from homogeneous domains; and (iv) the variation of domain wall energy with temperature
governs domain evolution through the process of creation and annihilation of walls upon
heating and cooling [2, 14–16]. However, since domain walls are usually a few lattice
constants wide, it is difficult to observe and measure directly their microstructure, including
the polarization profiles, energy, and inhomogeneous elastic strains. The only possible way
is to model the wall structure on the basis of its relations with the macroscopic properties
of the bulk crystal, and the Landau–Ginzburg (LG) theory provides phenomenologically a
particularly useful method for this purpose. This theory takes into account the nonlinear and
nonlocal characteristics of the polarization as well as the electromechanical coupling, from
which quasi-one-dimensional (Q1D) kink solutions for the space profiles of the polarization
components, the elastic strains, and the mechanical stresses of the walls can be deduced.
In particular, the general properties of domain walls obtained from the LG theory, such as
the wall broadening and wall energy variation, are verifiable by experiments [15–19].

Because 180◦, 90◦, 120◦, and 60◦ walls can coexist in the orthorhombic phase
of ferroelectric perovskites, the domain structures are more complicated than that in
the tetragonal phase. Actually, the ferroelectric perovskites (e.g. KNbO3) which are
orthorhombic at room temperature are heavily twinned, and the complex domain patterns
greatly affect the technological applications of the crystals [20]. In order to understand these
twinning phenomena, we use the LG theory in this paper to present a full description of
the 180◦, 90◦, and 120◦ wall structures which occur frequently in the orthorhombic phase.
The theoretical models presented depend only on fifteen macroscopic parameters obtainable
experimentally, and are applicable to the real system.

2. The model for the free energy

The ferroelectric phase transitions of most perovskites are of first order. For these transitions,
the Helmholtz free-energy density of the homogeneous system

F(Pi, Pi,j , ekl) = FL(Pi)+ Fel(ekl)+ Fc(Pi, ekl) (1)

is invariant under them3m symmetry of the cubic phase, and can be expanded in power
series in the polarization{Pi} and the elastic strain tensor{ekl} (i, j, k, l = 1, 2, 3):

FL = α1

∑
i

P 2
i + α11

∑
i

P 4
i + α12

∑
i<j

P i2P 2
j + α111

∑
i

P 6
i

+ α112

∑
i 6=j

P 2
i P

4
j + α123P

2
1P

2
2P

2
3 (2a)

Fel = c11

2

∑
k
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kk + c12

∑
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ekkell + 2c44
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k<l

e2
kl (2b)
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Fc = −q11

∑
i

eiiP
2
i −

q12

2

∑
i 6=j 6=k

eii(P
2
j + P 2

k )− 2q44

∑
i<j

eijPiPj (2c)

where theαi , αij , αijk are the dielectric stiffness and high-order stiffness coefficients at
constant strain, thecij are the second-order elastic constants at constant polarization, and the
qij are the electrostrictive coefficients [16, 21]. In the absence of external force, i.e. where
σij = ∂F/∂eij = 0 (the σij are the components of the total Cauchy stress tensor), the
relations between the polarization and strain components are

eii = Q11P
2
i +Q12(P

2
j + P 2

k ) for i 6= j 6= k

eij = 1

2
Q44PiPj for i 6= j

(3)

with the definitions

Q11 = q11(c11+ c12)− 2q12c12

(c11− c12)(c11+ 2c12)

Q12 = q12c11− q11c12

(c11− c12)(c11+ 2c12)

Q44 = q44

c44
.

(4)

By substituting equation (3) into equations (2b) and (2c), the total free-energy densityF
may be reexpressed so as to have the same form asFL, except that the coefficientsα11 and
α12 in equation (2a) should be replaced by

α′11 = α11+ −q
2
11(c11+ c12)+ 4q11q12c12− 2q2

12c11

2(c11− c12)(c11+ 2c12)

α′12 = α12+ q
2
11c12− 2q11q12c11+ q2

12(2c12− c11)

2(c11− c12)(c11+ 2c12)
− q2

44

2c44
.

(5)

In the orthorhombic phase, the spontaneous polarization has the formP = (P0, P0, 0),
whereP0 is the greater root of the equation

α1+ (2α′11+ α′12)P
2+ 3(α111+ α112)P

4 = 0. (6)

Compared with the case of the cubic lattice, the nonzero strain components of the ortho-
rhombic lattice are

e11 = e22 = (Q11+Q12)P
2
0 = ea

e33 = 2Q12P
2
0 = ec

e12 = Q44P
2
0 = et .

(7)

In an inhomogeneous system with a gradient distribution of the polarization, the free
energy must contain the gradient energy whose density to the lowest order can be written
as

FG = g11

2

∑
i

P 2
i,i + g12

∑
i<j

Pi,iPj,j + g44

2

∑
i<j

(Pi,j + Pj,i)2 (8)

for cubic symmetry. HerePi,j denotes the differential ofPi with respect to the position
coordinatesxj [16]. In the following sections, we concentrate on the inhomogeneous
orthorhombic phase containing 180◦, 90◦, and 120◦ domain walls.
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Figure 1. A schematic representation of a(1̄10) 180◦ twin in orthorhombic ferroelectric
perovskites. The dashed lines indicate the prototypic cubic lattice.γ = π/2+ 2et , and the
elastic strains are exaggerated.

3. The 180◦ wall

The 180◦ domain wall is an inhomogeneous transition layer connecting two domains with
opposite polarization vectors. In this section, we consider the structure of a static(1̄10) 180◦

wall separating two domains with polarizations(−P0,−P0, 0) and(P0, P0, 0), respectively,
as shown in figure 1. For convenience, thex1x2-plane is rotated alongx3 by 45◦ to make
a new coordinate systemxrxsx3. Then the strain tensors{ηij } (i, j = r, s,3) in thexrxsx3

system are expressed with respect to{eij } as

ηrr = 1

2
(e11+ e22+ 2e12)

ηss = 1

2
(e11+ e22− 2e12)

η33 = e33

ηrs = 1

2
(e22− e11)

ηr3 = 1√
2
(e13+ e23)

ηs3 = 1√
2
(e23− e13).

(9)

In general, the domain wall inside a bulk crystal has the quasi-one-dimensional (Q1D)
structure along the wall normal. For the present case, the structure depends only onxs
(abbreviated ass):

P = P (s) ηij = ηij (s) σij = σij (s). (10)

Under these conditions, the charge neutrality condition∇ · P = 0 becomes

Ps = 0 Pr =
√

2P1 =
√

2P2. (11)
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Thus, on defining the wall centre ass = 0, the boundary conditions of the 180◦ wall are

lim
s→±∞Pr(s) = ±

√
2P0 (12a)

lim
s→±∞P3(s) = 0 (12b)

lim
s→±∞ σij (s) = 0 (12c)

lim
s→±∞{ηij } =

(
ea + et 0 0

ea − et 0
ec

)
. (12d)

In the absence of dislocation and inclination, the compatibility relations of the strain
components [22],ηii,jk + ηjk,ii = ηij,ik + ηik,ij for ijk = rss, r33, s33, rs3, sr3, 3rs, yield

η33,ss = 0 ηrr,ss = 0 ηr3,ss = 0. (13)

Integrating equation (13) on the basis of the boundary condition of equation (12d ) leads to

η33 ≡ ec ηr3 ≡ 0 ηrr ≡ ea + et . (14)

Then in view of equations (14) and (9),Fel andFc can be rewritten as

Fel = ĉ+
4
η2
ss +

[
ĉ−
2
(ea + et )+ c12ec

]
ηss + (c11− c12)η

2
rs + 2c44η

2
s3

Fc = − q̂−
2
P 2
r ηss − q12P

2
3 ηss −

q̂+(ea + et )+ 2q12ec

2
P 2
r −

[
q11ec + q12(ea + et )

]
P 2

3

(15)

where ĉ± = c11 + c12 ± 2c44 and q̂± = q11 + q12 ± q44. Since the wall is treated as an
elastic solid here, it has the differential equation at equilibrium [22]∑

j

σij,j = 0 for i, j = r, s,3. (16)

From equations (10) and (12c), it follows immediately that

σij = ∂(Fel + Fc)
∂ηij

= 0 for ij = ss, rs, s3. (17)

Substituting equation (15) into equation (17), one has

ηss = A+ BP 2
r + CP 2

3

ηrs = ηs3 ≡ 0
(18)

where

A = − ĉ−(ea + et )+ 2c12ec

ĉ+

B = q̂−
ĉ+

C = 2q12

ĉ+
.

(19)

Therefore, the combination of equations (2a), (8), (11), (15), and (18) gives the total
free-energy densityF as

F = D1P
2
r +D2P

2
3 +D3P

4
r +D4P

4
3 +D5P

2
r P

2
3 +D6P

6
r +D7P

6
3

+ D8P
4
r P

2
3 +D9P

2
r P

4
3 +

grs

2
P 2
r,s +

g44

2
P 2

3,s (20)
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with

D1 = α1− q̂−
2
A− q̂+

2
(ea + et )− q12ec

D2 = α1− q12(A+ ec)− q11ec

D3 = 2α11+ α12

4
− q̂−

4
B D4 = α11− 3

2
q12C

D5 = α12− q12B D6 = α111+ α112

4

D7 = α111 D8 = 2α112+ α123

4
D9 = α112

(21)

and

grs = g11− g12

2
. (22)

It should be noted that the constant terms in equations (15) and (20) have been neglected
since they do not influence the following results. By inserting equation (20) into the Euler
equations [16, 23]∑

j

∂

∂xj

∂F

∂Pi,j
− ∂F

∂Pi
= 0 for i, j = r, s,3 (23)

one obtains the static equilibrium conditions of the 180◦ wall:

grsPr,ss = 2D1Pr + 4D3P
3
r + 2D5PrP

2
3 + 6D6P

5
r + 4D8P

3
r P

2
3 + 2D9PrP

4
3 (24a)

g44P3,ss = 2D2P3+ 4D4P
3
3 + 2D5P

2
r P3+ 6D7P

5
3 + 2D8P

4
r P3+ 4D9P

2
r P

3
3 . (24b)

Figure 2. Space profiles of the polarization and clamping stress components scaled in
dimensionless forms for the Ising-type 180◦ wall structure.

It is apparent that equations (24a) and (24b) have the analytic kink solution which
satisfies the boundary conditions equations (12a) and (12b):

Pr(s) =
√

2P0
sinh(s/δ1)√

q2
1 + cosh2(s/δ1)

P3(s) ≡ 0 (25)
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where

q2
1 =

2P 2
0

4P 2
0 −D3/D6

δ1 = 1

2P0

√
grs

6D6P
2
0 −D3

.

(26)

Here δ1 is conventionally used to characterize half the width of the 180◦ wall. The space
profile of the polarization represented by the solution of equation (25) is illustrated in figure
2. For this wall, the only position-dependent strain component isηss(s) = A+BP 2

r (s), and
the nonvanishing stress components required to sustain the Q1D structure are

σ33 = (c12B − q12)
[
P 2
r (s)− 2P 2

0

]
σrr =

(
c11+ c12

2
B − q11+ q12

2

) [
P 2
r (s)− 2P 2

0

]
.

(27)

Since the decrease of|Pr | within the wall layer tends to induce shrinkage and expansion
in the dimensions alongxr and x3, respectively, the two stresses required to resist this
tendency have opposite signs:σrr 6 0 andσ33 > 0, as presented schematically in figure
2. According to equation (3), removal of these stresses may, in principle, lead to ‘misfit
dislocations’ in the wall region for bulk crystals (although it may be different for thin films).
Therefore, a coherent 180◦ wall in a bulk crystal is always constrained. In particular, when
no external force is applied on the wall, the two normal stresses in equation (27) can be
provided automatically by the two domains (the domain-clamping effect).

Figure 3. Polarization profiles of the Bloch-type 180◦ wall structure. The curves have been
obtained by numerical integration of equations (24a) and (24b) with the same input parameters
as were used for calculating the curves in figure 2. Note that not only does the magnitude of
the polarization change, but also a rotation ofP B occurs. The width of the Bloch-type wall is
generally greater than that of the Ising-type wall.

The solution given as equation (25) indicates that the polarization vectorP =
[Pr(s), 0, 0] is always parallel to thexr -axis across the wall. Such a wall is often called
an ‘Ising-type’ wall [24]. However, the solutions of equations (24a) and (24b) are not
unique in general. It can be proved that, besides the kink solution, there may exist another
solution which contains two variable polarization componentsPr(s) andP3(s) (6=0) within



4474 X R Huang et al

the wall layer. This kind of wall structure is of ‘Bloch type’, and in this paper its solutions
are denoted by the superscript ‘B ’. In order to obtain numericallyPBr (s) and PB3 (s), it
is necessary to integrate equations (24a) and (24b) from the wall centres = 0 to ±∞.
According to equations (12a) and (12b), one may naturally assume thatPBr (0) = 0 and
PB3,s(0) = 0. The other two initial valuesPB3 (0) andPBr,s(0) are related to each other by the
first integrals of equations (24a) and (24b)

grs

2
P 2
r,s +

g44

2
P 2

3,s = D1P
2
r +D2P

2
3 +D3P

4
r +D4P

4
3 +D5P

2
r P

2
3 +D6P

6
r +D7P

6
3

+ D8P
4
r P

2
2 +D9P

2
r P

4
3 − F0 (28)

where F0 = 2D1P
2
0 + 4D3P

4
0 + 8D6P

6
0 corresponds to the free-energy density of the

homogeneous state. Therefore, by scanning eitherP3(0) or Pr,s(0) during the integration,
one can obtain the solution [PBr (s), P

B
3 (s)] which satisfies the boundary conditions of

equations (12a) and (12b) [25]. The profiles ofPBr , PB3 , and |P B | calculated with the
same input parameters as for figure 2 are plotted in figure 3, in which the total polarization
P B is rotated from (0,−√2P0, 0) to (0,

√
2P0, 0) across the Bloch-type wall, though the

magnitude ofP B varies withxs . Like the Ising-type wall, the Bloch-type wall has no shear
deformation, and onlyηBss , which is related toPBr andPB3 by equation (18), varies along
the xs-axis. The stresses required to sustain such a wall areσBrr , σ

B
33, andσBr3, and they are

functions ofPBr andPB3 . In fact, the coexistence ofPBr andPB3 within the wall layer tends
to produce a shear deformation within the wall plane, but this tendency is resisted by the
shear stressσBrs .

Figure 4. The arrangement of a twinned ‘V-shaped’ crystal in orthorhombic ferroelectric
perovskites. The twin boundary is a (100) 90◦ wall.

4. The 90◦ wall

The 90◦ wall of ferroelectric perovskites connects two domains whose polarization vectors
are nearly perpendicular to each other. The 90◦ domain walls in the tetragonal phase
are along{110} lattice planes, but in the orthorhombic phase, they are parallel to the
{100} planes. A (100) 90◦ wall separating two domains with polarization(P0,−P0, 0) and
(P0, P0, 0), respectively, is shown in figure 4. For the Q1D structure of the wall, the space
profile of the polarization only depends on the space variablex1. In this case∇ · P = 0
yieldsP1 ≡ P0. Then the boundary conditions are

lim
x1→±∞

P3(x1) = 0 lim
x1→±∞

P2(x1) = ±P0. (29)
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Similarly to the case for the 180◦ wall, the strain compatibility of the 90◦ wall requires
three constant strain components in space:

e22 ≡ ea e33 ≡ ec e23 ≡ 0. (30)

Consequently, the elastic energy of equation (2b) and the coupling energy of equation (2c)
are rewritten as

Fel = c11

2
e2

11+ c12(ea + ec)e11+ 2c44(e
2
12+ e2

13) (31a)

and

Fc = −q11(e11P
2
0 + eaP 2

2 + ecP 2
3 )− q12

[
eaP

2
3 + ecP 2

2 + e11(P
2
2 + P 2

3 )
]

− 2q44P0(e12P2+ e13P3). (31b)

In figure 4, the equilibrium conditions of the stress tensor for the wall are
∑
j σij,j = 0

(i, j = 1, 2, 3), which lead toσ11 = σ12 = σ13 = 0, or

e11 = 1

c11

[−c12(ea + et )+ q11P
2
0 + q12(P

2
2 + P 2

3 )
] = A1+ B1(P

2
2 + P 2

3 )

e12 = q44

2c44
P0P2 = C1P2 e13 = C1P3.

(32)

Substituting equation (32) into equation (31) and insertingP = (P0, P2, P3) into equation
(2a), one can write the total free-energy density of the 90◦ wall as

F = g44

2
(P 2

2,1+ P 2
3,1)+ E1P

2
2 + E2P

2
3 + E3(P

4
2 + P 4

2 )+ E4P
2
2P

2
3

+ α111(P
6
2 + P 6

3 )+ α112P
2
2P

2
3 (P

2
2 + P 2

3 ) (33)

where the constantsEi are defined as

E1 = α1+ α12P
2
0 + α112P

4
0 − 2c44C

2
1 − q11ea − q12(ea + A1)

E2 = E1+ (q11− q12)(ea − ec)
E3 = α11+ α112P

2
0 −

1

2
q12B1

E4 = α12+ α123P
2
0 − q12B1.

(34)

The Euler equations given as equation (23) now become

g44P2,11 = 2E1P2+ 4E3P
3
2 + 2E4P2P

2
3 + 6α111P

5
2 + 4α112P

3
2P

2
3 + 2α112P2P

4
3 (35a)

g44P3,11 = 2E2P3+ 4E3P
3
3 + 2E4P

2
2P3+ 6α111P

5
3 + 2α112P

4
2P3+ 4α112P

2
2P

3
3 . (35b)

Again, equations (35a) and (35b) have the kink solution

P2(x1) = P0
sinh(x1/δ2)√

q2
2 + cosh(x1/δ2)

P3(x1) ≡ 0 (36)

where

q2
2 =

P 2
0

2P 2
0 − E3/α111

δ2 = 1

P0

√
g44

6α111P
2
0 − 2E3

.

(37)

For this solution, it can be seen from equation (32) thate13 = 0, and the only two
inhomogeneous strain components aree11(x1) = A1 + B1P

2
3 (x1) and e12 = C1P2(x1).
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The continuous variation ofe12 from −et to et indicates that the V-shaped bicrystal plotted
in figure 4 is actually rounded at the wall centre, like to the ferroelastic domain wall in
NdP5O14 [18]. The associated nonzero stress components required to support the Q1D
structure of the wall are given by

σ22(x1) = (c12B1− q11− q12)
[
P 2

2 (x1)− P 2
0

]
σ33(x1) = (c12B1− q12)

[
P 2

2 (x1)− P 2
0

]
.

(38)

Because the constantsQ11 and Q12 defined in equation (7) are positive and negative,
respectively for most perovskite ferroelectrics; the decrease of|P2(x1)| from P0 to zero
upon approachingx1 = 0 has a tendency to produce shrinkage and expansion of the wall
lattice alongx2 andx3 respectively. Therefore, the two normal stressesσ22 andσ33 required
to keepe22 and e33 constant across the wall have opposite signs:σ22 > 0 andσ33 < 0.
Moreover, it can be seen that the shape of the bicrystal divided by the 90◦ wall is rounded
automatically in thex1x2-plane without any shear stress being applied.

The above solution for the 90◦ wall shows that the polarization has the formP =
[P0, P2(x1), 0]. This kind of wall can still be considered as an Ising-type wall. Since
equations (35a) and (35b) have the same forms as equations (24a) and (24b), they may also
have the Bloch-type solutionP B = [P0, P

B
2 (x1), P

B
3 (x1)], wherePB2 (x1) andPB3 (x1) are

nonzero within the wall layer. For the latter polarization configuration, the inhomogeneous
strain components areeB11, eB22, and eB13 (see equation (32)), and the stresses required to
sustain the wall areσB22, σB33, andσB23.

Figure 5. A schematic representation of a 120◦ twin in orthorhombic perovskites. The shaded
interface indicates the uncharged wall. In thex1x2x3 coordinate system,P = (P0, 0, P0) and
P ′ = (0, P0,−P0).

5. The 120◦ wall

The strain compatibility of different orientation domains gives two kinds of planar wall
called ‘W walls’ [13] in the orthorhombic phase of perovskite ferroelectrics: one is the 90◦

wall, and the other is the 120◦ wall which is strictly parallel to the{110} lattice planes (the
electrically uncharged wall). The configuration of a (110) 120◦ wall is shown in figure 5,
in which thexrxsx3 coordinate system is generated by rotating thex1x2x3 system along
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x3 by 45◦. For the Q1D wall structure which varies only alongxr (abbreviated asr), the
boundary conditions expressed in thex1x2x3 coordinate system are

lim
r→−∞P = (P0, 0, P0) lim

r→∞P = (0, P0,−P0) (39a)

and

lim
r→−∞{eij } =

(
ea 0 et

ec 0
ea

)
lim
r→∞{eij } =

(
ec 0 0

ea −et
ea

)
. (39b)

In the xrxsx3 coordinate system, the polarization componentsPr andPs are expressed in
terms ofP1 andP2 as

Pr = (P1+ P2)/
√

2 Ps = (P2− P1)/
√

2 (40)

and the strain componentsηij are given by equation (9). The charge-neutral condition of
the 120◦ wall, ∇ · P = 0, now becomesPr ≡ P0/

√
2, and the boundary conditions forPr

andPs are

lim
r→±∞Ps = ±P0/

√
2 lim

r→±∞P3 = ∓P0. (41)

The strain compatibility relations require three constant strain components,ηss , η33, and
ηs3, across the wall. Then from equations (9) and (39b) it follows that

ηss ≡ (ea + ec)/2 η33 ≡ ea ηs3 ≡ −et/
√

2. (42)

The other three strain components are position dependent, and their boundary conditions
are

lim
r→±∞ ηr3 = ∓et/

√
2

lim
r→±∞ ηrs = ±(ea − ec)/2

lim
r→±∞ ηrr = (ea + ec)/2.

(43)

Inserting equation (42) into equation (9) and then inserting equation (9) into equations (2b)
and (2c), one has

Fel = ĉ+
4
η2
rr +

ĉ−(ea + ec)+ 4c12ea

4
ηrr + (c11− c12)η

2
rs + 2c44η

2
r3 (44a)

Fc = −
(
q̂+
4
P 2

0 +
q̂−
2
P 2
s + q12P

2
3

)
ηrr −

√
2q44P0P3ηr3−

√
2(q11− q12)P0Psηrs

− q̂+(ea + ec)
2

P 2
s −

q12(ea + ec)
2

P 2
3 − q11eaP

2
3 − q12eaP

2
s +
√

2q44etPsP3.

(44b)

The three zero-stress components derived from equation (16) are nowσrr , σrs , andσr3. By
differentiatingFel + Fc in equation (44) with respect toηrr , ηrs , andηr3, one obtains the
three position-dependent strain components

ηrr = A2+ B2P
2
s + C2P

2
3

ηrs = B3Ps

ηr3 = C3P3

(45)
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where

A3 = q̂+P 2
0 − ĉ−(ea + ec)− 4c12ea

2ĉ+

B2 = q̂−
ĉ+

C2 = 2q12

ĉ+

B3 = q11− q12√
2(c11− c12)

P0 C3 = q44

2
√

2c44

P0.

(46)

Substituting equation (45) into equation (44) and taking into account equations (2a) and
(40), one can eventually write the total free-energy density as

F = G1P
2
s +G2P

2
3 +
√

2q44etPsP3+G4P
4
s +G5P

4
3 +G6P

2
s P

2
3 +

α111+ α112

4
P 6
s

+ α111P
6
3 +

2α112+ α123

4
P 4
s P

2
3 + α112P

2
s P

4
3 +

grs

2
P 2
s,r +

g44

2
P 2

3,r (47)

where

G1 = α1+ 6α11− α12

4
P 2

0 +
15α111− α112

16
P 4

0

− q̂−
2
A2− (c11− c12)B

2
3 −

q̂+
4
(ea + ec)− q12ea (48a)

G2 = α1+ α12

2
P 2

0 +
2α112+ α123

16
P 4

0 − 2c44C
2
3 −

q12

2
(ea + ec)− q11ea − q12A2 (48b)

G4 = 2α11+ α12

4
+ 15α111− α112

8
P 2

0 −
q̂−
4
B2 (48c)

G5 = α11+ α112

2
P 2

0 −
q12

2
C2 (48d)

G6 = α12+ 3α112

2
P 2

0 −
α123

4
P 2

0 −
q̂−
2
C2. (48e)

It can be proved that the equilibrium equations for the 120◦ wall, obtained by inserting
equation (47) into equation (23), have similar forms to equation (24) and equation (35).
Like the 90◦ and 180◦ walls, the 120◦ wall also has two kinds of polarization configuration:
one is of Ising type and the other of Bloch type. Here we only give the Ising-type solution.

In figure 4, it is the polarization vectorP‖ = Ps ŝ+P3k̂ (parallel to the wall plane) that
varies from−(P0/

√
2)ŝ+ P0k̂ to (P0/

√
2)ŝ− P0k̂, whereŝ and k̂ are unit vectors along

xs and x3, respectively. For the Ising type wall, the direction ofP‖ is always parallel to
(1/
√

2)ŝ− k̂, which means that

Ps ≡ −P3/
√

2. (49)

Then the total free-energy density in equation (47) becomes

F = H1P
2
3 +H2P

4
3 +H3P

6
3 +

grs + 2g44

4
P 2

3,r (50)

where theHi are defined as

H1 = G1

2
+G2− q44et

H2 = G4

4
+G5+ G6

2

H3 = 33α111+ 21α112+ 2α123

32

(51)
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andgrs is defined by equation (22). In this case, the Euler equations reduce to

grs + 2g44

2
P3,rr = 2H1P3+ 4H2P

3
3 + 6H3P

5
3 (52)

in the xrxsx3 coordinate system. Subsequently, the kink solutions forPs andP3 are

P3(r) = −Ps(r)√
2
= P0

sinh(r/δ3)√
q2

3 + cosh(r/δ3)

(53)

where

q2
3 =

P 2
0

2P 2
0 −H2/3H3

δ3 = 1

2P0

√
grs + 2g44

3P0H3−H2
.

(54)

On the basis of the above polarization profiles, thexr -dependent strain componentsηrr(r),
ηrs(r), andηr3(r) can be quantified from equation (45). Furthermore, the stresses required
to sustain the Q1D structure of the 120◦ wall are

σss(r) =
(
ĉ−
4
B2
q̂+
4
− ĉ−

2
C2− q12

) [
P 2

3 (r)− P 2
0

]
σs3(r) =

√
2q44

[
P 2

3 (r)− P 2
0

]
σ33(r) =

(
c12

2
B2+ c12C2− q11− q12

2

) [
P 2

3 (r)− P 2
0

]
.

(55)

Here the normal stressesσss andσ33 are present to resist the contraction and expansion of
the wall in the lateral directionsxs andx3, respectively. Compared with the Ising-type 180◦

and 90◦ walls, the Ising-type 120◦ wall has an extra stress componentσs3. This stress is
required to keep the shear strainηs3 constant across the wall (removal ofσs3 may induce
interface disclinations). For a perfect crystal with free boundary conditions, the shear stress
σs3 is usually provided by the surface tension of the crystal while the normal stresses are
due to the internal elastic force.

6. Discussion and conclusions

On the basis on the LG theory, we have developed continuum models of the 180◦, 90◦, and
120◦ domain wall structures in the orthorhombic phase of ferroelectric perovskites by taking
into account the elastic interactions and the gradient energy induced by the polarization
inhomogeneities. The models show that for an uncharged wall, the polarization component
normal to the wall interface always keeps constant across the transition layer, while the
component parallel to the wall has either an Ising-type profile or a Bloch-type profile.
Due to the strain–polarization interactions, the elastic strains within the wall layer are also
inhomogeneous, but the coherent wall keeps the lateral strains constant and permits no
variation of the shear deformation in the planes parallel to the wall interface. Such a
constrained state is sustained by position-dependent stresses.

In the framework of the LG theory, the solutions for 180◦, 90◦, and 120◦ walls
obtained from the preceding processes are exact, and describe fully the three-dimensional
configurations of the polarization, elastic strains, and clamping stresses. In particular, the
solutions depend only on the fifteen coefficients of the expansion series of equations (2)
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and (8). All of these coefficients correspond to certain macroscopic physical quantities of
perovskite ferroelectrics. In general, the elastic Gibbs free energy

G = F −
∑
ij

σij eij (56)

is used to correlate the dielectric, piezoelectric, and elastic properties of the paraelectric and
ferroelectric phases. For single-domain perovskites,G may be expressed as

G = ασ1
∑
i

P 2
i + ασ11

∑
i

P 4
i + ασ12

∑
i<j

P i2P 2
j + ασ111

∑
i

P 6
i + ασ112

∑
i 6=j

P 2
i P

4
j

+ ασ123P
2
1P

2
2P

2
3 −

sP11

2

∑
i

σ 2
ii − sP12

∑
i<j

eiiejj − s
P
44

2

∑
i<j

e2
ij

− Q11

∑
i

σiiP
2
i −

Q12

2

∑
i 6=j 6=k

σii(P
2
j + P 2

k )−Q44

∑
i<j

σijPiPj (57)

where theασ1 , ασi , ασijk are the dielectric stiffness and high-order stiffness coefficients
measured atconstant stress(different from theα1, αij , andαijk of the clamped state; see
equation (2a)), thesPij are the elastic compliance coefficients at constant polarization, and the
Qij have been defined in equation (4). Techniques for determining theασ1 , ασi , ασijk, andQij

(as well as their temperature dependence) have been described and discussed extensively
in, for example, references [26–28]: the dielectric stiffnessασ1 which depends linearly on
temperature can be obtain from the Curie–Weiss law, theασij andσσijk are usually determined
by correlating them with the spontaneous polarization measured at the Curie point, and the
Qij may be solved from the relations between the lattice deformation and the polarization
(see equation (3)). Provided that these coefficients are given, determination of the expansion
coefficients in equation (2) is as follows.

Since the original cubic structure of perovskites is centro-symmetric, one hasα1 = ασ1 .
For the stress-free state (i.e.σij = 0),G andF are identical, which indicates from equations
(2), (5) and (57) thatα′ij = ασij and αijk = ασijk. Furthermore, becauseQij and the
second-order elastic constantscij (or the elastic compliance coefficientssPij ) can be measured
directly, the electrostrictive coefficientsqij are obtainable from equation (4). As thecij , qij ,
andα′ij are known, one may obtainαij from equation (5). Finally, Cao [29] has correlated
the polarization gradient coefficientsgij in equation (8) with the dispersion surface of the
soft mode of perovskites, and on the basis of this correlation, the three gradient coefficients
can, in principle, be determined through measurements along the three principal directions
in inelastic neutron scattering experiments.

In most cases, all of the coefficients in equations (2) and (8) exceptα1 are weakly
temperature dependent. Therefore, for a semi-quantitative description of the walls, these
macroscopic quantities are measured near the Curie point and assumed constant in all of the
ferroelectric phases. In this manner, the results show that the increase ofα1 upon heating can
lead to an increase of the wall width and a decrease of the wall energy, which is a common
feature for ferroic domain walls and has been verified by experiments [17, 18, 30]. For a
more accurate quantification, the variation of the higher-order coefficients with temperature
must be considered. Fortunately, by correlating the dielectric, piezoelectric, and elastic
properties of the perovskites, these parameters in the orthorhombic phase can be extrapolated
from the values obtained near the Curie point [27, 28]. When the temperature dependence
of all of the coefficients is known, one can deduce the exact profiles of the polarization,
strains, and clamping stresses for a domain wall at any temperature point. At present, the
experimental results concerning the domain wall structures in orthorhombic perovskites are
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sparse, but some direct measurements performed on the walls in the tetragonal phase may
prove the validity of the present theory. For example, Zhang, Hashimoto, and Joy [31] have
studied the 90◦ walls in tetragonal BaTiO3 using electron holography. Comparing figure 3
of reference [31] and figure 2 of the present paper, one can find that the polarization profile
obtained experimentally is, indeed, very similar to the kink solutions of equations (25),
(36), and (53) instead of the equationPz = P0 tanh(x/δ) which is for second-order phase
transitions. (Note that the Ising-type walls in the tetragonal phase also have kink solutions
according to the present theory.)

It should be noted that in a uniaxial ferroelectric crystal, the (180◦) domain walls
are always of Ising type. However, since the spontaneous polarization of ferroelectric
perovskites can take more than one components along the three〈100〉 axes of the cubic
structure, the domain walls may appear in either Ising-type or Bloch-type configurations. In
fact, the possible existence of the Bloch-type domain wall is a unique property of perovskite
crystals. For such a interfacial structure, the polarization component along the direction
parallel to the wall spirals from the original direction to the opposite direction across the
wall layer. Generally, the wall structure with relatively lower energy is thermodynamically
stable. The existence of Bloch-type walls in perovskites may be proved by the fact that the
180◦ walls in BaTiO3 are directly visible between crossed polarizers even with no external
electric field normal to the polar axis applied [32]. Since the Ising-type 180◦ walls are
invisible from considerations of lattice symmetry, the 180◦ walls observable under polarized
light are believed to be of Bloch type [25].

The most complicated domain wall in orthorhombic perovskites is the 60◦ wall whose
orientation cannot be described by a crystallographic plane (the W′ wall) [13]. This kind
of wall occurs only within the high-temperature range or in significantly inhomogeneous
crystals. But, by the same procedure as presented in this paper, one can obtain similar results
for the detailed wall structure in a suitably transformed coordinate system. In this sense, the
above treatment for 180◦, 90◦, and 120◦ walls provides a generalφ6-model for predicting
domain wall structures in real perovskites associated with the first-order ferroelectric phase
transitions, and it can be extended to describe any kinds of twin structure in all of the three
ferroelectric phases.
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