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Abstract. The microstructures of coherent T890°, and 120 domain walls in the ortho-
rhombic phase of ferroelectric perovskites have been studied on the basis of Landau—-Ginzburg
theory for the first-order phase transitions. It is found that for the space profile of the polarization
within an uncharged wall layer, the normal component always remains zero or constant, while
the component parallel to the wall plane has two kinds of inhomogeneous configuration, one of
the ‘Ising type’ and the other of the ‘Bloch type’. Quasi-one-dimensional analytic solutions for
polarization components, elastic strains, and clamping stresses are obtained for the Ising-type
180, 90°, and 120 wall interfaces. The structural characteristics and physical properties of the
Bloch-type walls are also illustrated and discussed. All of the theoretical results are functions
of macroscopic quantities for perovskite crystals, and can be applied to real systems when these
quantities are obtained from experiments.

1. Introduction

Many ferroelectric perovskites, such as Bajiénd the KTa_,Nb,O3z (0.05 < x < 1)

series, exhibit the classical phase transition sequence from the paraelectric cubic phase
to ferroelectric tetragonal, orthorhombic, and rhombohedral phases upon cooling [1-4]. A
common phenomenon of the three ferroelectric phases is the twinning between energetically
equivalent domains. Well known examples are the°180d 90 twins in the tetragonal
phase, whose domain morphology and dynamics have been investigated extensively [5-8].
In the orthorhombic phase, the polar axes of a pair of adjoining domains can take any two
of the twelve equivalent110 directions of the prototypic cubic lattice, which gives rise

to four kinds of twinning structure defined as 2800°, 120, and 60 twins, respectively,
depending on the size (in degrees) of the angle between the two polarization vectors.
Generally, a domain wall (twin boundary) connecting two twinned domains contains excess
energy compared to a single-domain structure, and this energy is minimized when the
polarization vectors are arranged to satiSfy- P = 0 within the wall layer. Most domain

walls in ferroelectrics satisfy this condition, and are called ‘uncharged walls’ (charge-neutral
walls) [9, 10]. According to this rule, an uncharged 18@ll in an orthorhombic perovskite

is always parallel to the polar axes of the domains separated by the wall. Besides the
charge neutrality condition, the orientations of uncharget 920>, and 60 walls also
satisfy strain compatibility between the adjacent domains [11]. For this reason, the 90
and 120 walls are parallel to{100} and {110} lattice planes, respectively. The 60
walls determined by the charge neutrality and strain compatibility are alond/thig

lattice planes withh/k = (e, — e.)/2¢; (es, e., ande; are the strain components of the
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homogeneous orthorhombic lattice with respect to the cubic lattice; see section 2) [12]. In
the rhombohedral phase, the polar axes are the €itly directions, and consequently
180, 118, and 62 twinnings are possible.

Although the theories of twinning rules for ferroic crystals have been well elaborated
[13], an understanding of domain wall structure remains a most important issue in the study
of ferroelectricity at present. In fact, the structure of domain walls plays an essential role in
the ferroelectric behaviours of perovskite and other crystals: (i) the morphology of a domain
is determined by the anisotropy of the wall energy; (ii) the switching of domains in external
(electrical and mechanical) fields is actually realized by the wall motion, i.e. the nucleation
and growth of new domains in the vicinity of the walls; (iii) domain walls are natural
nucleation sites for ferroelectric phase transitions due to their special structure deviating
from homogeneous domains; and (iv) the variation of domain wall energy with temperature
governs domain evolution through the process of creation and annihilation of walls upon
heating and cooling [2, 14-16]. However, since domain walls are usually a few lattice
constants wide, it is difficult to observe and measure directly their microstructure, including
the polarization profiles, energy, and inhomogeneous elastic strains. The only possible way
is to model the wall structure on the basis of its relations with the macroscopic properties
of the bulk crystal, and the Landau—-Ginzburg (LG) theory provides phenomenologically a
particularly useful method for this purpose. This theory takes into account the nonlinear and
nonlocal characteristics of the polarization as well as the electromechanical coupling, from
which quasi-one-dimensional (Q1D) kink solutions for the space profiles of the polarization
components, the elastic strains, and the mechanical stresses of the walls can be deduced.
In particular, the general properties of domain walls obtained from the LG theory, such as
the wall broadening and wall energy variation, are verifiable by experiments [15-19].

Because 180 90, 120, and 60 walls can coexist in the orthorhombic phase
of ferroelectric perovskites, the domain structures are more complicated than that in
the tetragonal phase. Actually, the ferroelectric perovskites (e.g. KNbdich are
orthorhombic at room temperature are heavily twinned, and the complex domain patterns
greatly affect the technological applications of the crystals [20]. In order to understand these
twinning phenomena, we use the LG theory in this paper to present a full description of
the 180, 9¢°, and 120 wall structures which occur frequently in the orthorhombic phase.
The theoretical models presented depend only on fifteen macroscopic parameters obtainable
experimentally, and are applicable to the real system.

2. The model for the free energy

The ferroelectric phase transitions of most perovskites are of first order. For these transitions,
the Helmholtz free-energy density of the homogeneous system
F(P;, P j,ex) = FL(P;) + Fe(ew) + Fe(Pi, enr) 1)

is invariant under then3m symmetry of the cubic phase, and can be expanded in power
series in the polarizatiofiP;} and the elastic strain tens¢r,} (i, j, k, 1 = 1, 2, 3):

Fr=oa E 1”,-2 + a1 E Pi4 + a2 E Piszz + 111 E P,~6
; : i<j :
+ a112 E P?P] + a123P{ P P5 (2a)
i#j

C11
Fo=— ) e +c1) ewen+2a) e (2b)
k k<l k<l
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F. = —61112€iif’,-2 - % Z eii(sz + P2 — 2514426173' P; (20)

i i#j#k i<j
where theo;, «;;, a;j are the dielectric stiffness and high-order stiffness coefficients at
constant strainthec;; are the second-order elastic constants at constant polarization, and the
g;j are the electrostrictive coefficients [16, 21]. In the absence of external force, i.e. where
o;j = 0F/de;; = 0 (the o;; are the components of the total Cauchy stress tensor), the

relations between the polarization and strain components are

eii = QuP? + QlZ(sz + PP fori#j#k

1 o 3
ejj =§Q44Pin fori # j
with the definitions
Op = g11(c11 + c12) — 291212
(c11 — c12)(c11 + 2c10)
q12€11 — q11€12
O12= 4)
Y7 (e11— c1o)(can + 2c12)
Qua = a4,
Cas

By substituting equation (3) into equationsbfZand (Z), the total free-energy densitiy
may be reexpressed so as to have the same forfm asxcept that the coefficients; and
a1z in equation () should be replaced by

—qy(c11+ c12) + 4q11912012 — 2g%5c11
2(c11 — c12)(c11 + 2c12)
q2c12 — 2q11912¢11 + ¢5(2c12 — c11) B q_424
2(c11 — c12)(c11 + 2c12) 244

’
o =011+

®)

/
oy =012+

In the orthorhombic phase, the spontaneous polarization has the Forn (P, P, 0),
where P, is the greater root of the equation

a1 + (2 + ajp) P? + 311 + a112) PY = 0. (6)

Compared with the case of the cubic lattice, the nonzero strain components of the ortho-
rhombic lattice are
e11 =exn=(Qu1+ Q12)Po2 =e
es3 = 201P¢ = e, (7)
e12= QuP¢ =e,.
In an inhomogeneous system with a gradient distribution of the polarization, the free

energy must contain the gradient energy whose density to the lowest order can be written
as

_ £11 2 844 2
Fo == Z P+ ng; Piibij+ = ;(Pi,j + Pji) ®)

for cubic symmetry. HereP; ; denotes the differential oP; with respect to the position
coordinatesx; [16]. In the following sections, we concentrate on the inhomogeneous
orthorhombic phase containing 18®0°, and 120 domain walls.
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Figure 1. A schematic representation of @10 180° twin in orthorhombic ferroelectric
perovskites. The dashed lines indicate the prototypic cubic lattice= 7 /2 + 2¢,, and the
elastic strains are exaggerated.

3. The 180 wall

The 180 domain wall is an inhomogeneous transition layer connecting two domains with
opposite polarization vectors. In this section, we consider the structure of a(&tEjc180°

wall separating two domains with polarizatiogs Py, — Py, 0) and (Po, Py, 0), respectively,

as shown in figure 1. For convenience, the,-plane is rotated alongs by 45 to make

a new coordinate systemx,x3. Then the strain tensofs;;} (i, j = r, s, 3) in thex,x,x3
system are expressed with respectdg} as

1
Nrr = 5(611 + e22 + 2e12)

1
Nes = 5(611 + e22 — 2e1)
133 = €33

©)

— )
Nrs = 2 €22 — €11
1
N3 = 3(613 + e23)

1
N3 = 72(623 — e13).

In general, the domain wall inside a bulk crystal has the quasi-one-dimensional (Q1D)
structure along the wall normal. For the present case, the structure depends only on
(abbreviated as):

P = P(s) nij = nij(s) oij = 0j;(s). (10)
Under these conditions, the charge neutrality condi¥on P = 0 becomes

P, =0 P, = /2P, = /2P;. (11)
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Thus, on defining the wall centre as= 0, the boundary conditions of the 18®all are

A%Emziﬁ% (12a)

i, Ps(s) =0 (120)

Sli)rl]oo 0;j(s) =0 (1)
e, + e 0 0

im i} = ( o 60) . (12d)

In the absence of dislocation and inclination, the compatibility relations of the strain
components [22]p;; jx + Njk,ii = Nij ik + Nik,ij TOr ijk = rss, r33,s33,rs3, sr3, 3rs, yield

N33ss = 0 Nrr.ss = 0 Nr3,ss = 0. (13)
Integrating equation (13) on the basis of the boundary condition of equatior) (@&ds to
N33 = €. nr3 = 0 Nrr = €4 + e;. (14)

Then in view of equations (14) and (9,; and F,. can be rewritten as

¢ c_
Fo= =12 + | —(ea +e) + crzec | nss + (11— c12)n?, + 2caan’s
4A 2 (15)

q- G+ (eq + /) +2q12e
Fc=_7Pr277.¥s_q12P32nss_ e t2 <

wherecéy = ¢33 + c12 £ 2¢c44 and g+ = qa11 + q12 £ g44. Since the wall is treated as an
elastic solid here, it has the differential equation at equilibrium [22]

P? — [quiec + qio(eq + €)] P2

> 0 =0 fori, j=r,s, 3. (16)
J
From equations (10) and (& it follows immediately that
d(F, + F.
oij = % =0 forij = ss,rs, s3. a7)
Nij

Substituting equation (15) into equation (17), one has

Ny = A+ BP?+ CPZ

Nrs =153 =0 (18)
where
Ao _ C-(eate) + 2cr0e
) b (19)
p=d= o2
Ct Cy

Therefore, the combination of equations)2(8), (11), (15), and (18) gives the total
free-energy density" as

F = D1P? + D2P? + D3P* + D4P3 + DsP?PZ + DgP® + D7 P
+ DoP P} + DoP?Pf + P2 + 802, (20)
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with
Dy =oa; — %A - %(e‘a +e) — quzec
Dy = a3 — q12(A + e.) — quiec
2011+ o12 G- 3
Ds=—p—-7,8 Da = a11 = 5412C (21)
o111+ @112
Ds = a1 — q12B Dg = —
20112+ 0123
D7 = a111 Dg = — Dg = ay12
and
811 — 812
grs = T (22)

It should be noted that the constant terms in equations (15) and (20) have been neglected
since they do not influence the following results. By inserting equation (20) into the Euler
equations [16, 23]

d oF oF

i R o fori,j=r,s,3 (23)
7 ij 8Pi’j BP,

one obtains the static equilibrium conditions of the 18@&ll:
rs Prss = 2D1 P, + 4D3P° + 2DsP, P2 + 6D P® + 4Dg P> P2 + 2Dg P, P3 (249)
g4aP3ys = 2D2P3 + 4Dy P2 + 2DsP? Py 4+ 6D7 P35 4 2Dg P2 P3 + 4Dg P2 P3. (24b)

Polarization and Stress

518,

Figure 2. Space profiles of the polarization and clamping stress components scaled in
dimensionless forms for the Ising-type 28@all structure.

It is apparent that equations @4and (24) have the analytic kink solution which
satisfies the boundary conditions equationsajléhd (12):

sinh(s /81)

4% + cost(s/81)

P.(s) = V2P, P3(s) =0 (25)
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where
PN
Y7 4PZ — D3/ Dg
(26)
1 8rs

~ 2Py\ 6DgPZ — D3’

Here §; is conventionally used to characterize half the width of the°188ll. The space
profile of the polarization represented by the solution of equation (25) is illustrated in figure
2. For this wall, the only position-dependent strain component,is) = A+ BP2(s), and
the nonvanishing stress components required to sustain the Q1D structure are

033 = (c12B — q12) [ P?(s) — 2P¢]

o — (Cll T2, qut 6112> [P2(s) — 2PE].

2 2

Since the decrease ¢P,| within the wall layer tends to induce shrinkage and expansion
in the dimensions along, and x3, respectively, the two stresses required to resist this
tendency have opposite signs;, < 0 andozs > 0, as presented schematically in figure
2. According to equation (3), removal of these stresses may, in principle, lead to ‘misfit
dislocations’ in the wall region for bulk crystals (although it may be different for thin films).
Therefore, a coherent 18Wall in a bulk crystal is always constrained. In particular, when
no external force is applied on the wall, the two normal stresses in equation (27) can be
provided automatically by the two domains (the domain-clamping effect).

81

(27)

1.0

0.5

0.0

Polarization

Figure 3. Polarization profiles of the Bloch-type 18@vall structure. The curves have been
obtained by numerical integration of equationsddnd (24) with the same input parameters

as were used for calculating the curves in figure 2. Note that not only does the magnitude of
the polarization change, but also a rotation¥ occurs. The width of the Bloch-type wall is
generally greater than that of the Ising-type wall.

The solution given as equation (25) indicates that the polarization veltoe
[P.(s),0,0Q] is always parallel to the,-axis across the wall. Such a wall is often called
an ‘Ising-type’ wall [24]. However, the solutions of equations g24nd (24) are not
unique in general. It can be proved that, besides the kink solution, there may exist another
solution which contains two variable polarization compondni@) and Ps(s) (£0) within
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the wall layer. This kind of wall structure is of ‘Bloch type’, and in this paper its solutions
are denoted by the superscrigt’: In order to obtain numerically??(s) and P2 (s), it
is necessary to integrate equationsa2dnd (24) from the wall centres = 0 to +oo.
According to equations (¥} and (1), one may naturally assume th&f(0) = 0 and
PJ (0) = 0. The other two initial value®;’ (0) and P”, (0) are related to each other by the
first integrals of equations (2% and (24)
"%SPES + g—;Pés = DyP? + DyP2 + D3P* + DyP2 + DsP2P2 + DP® + D7P$

+ DgP*P? + DgP? Py — Fo (28)

where Fo = 2D1P¢ + 4D3Py + BDE;Pé3 corresponds to the free-energy density of the
homogeneous state. Therefore, by scanning eif3éd) or P.,(0) during the integration,

one can obtain the solutionPP(s), P3B(s)] which satisfies the boundary conditions of
equations (1&) and (12) [25]. The profiles of P?, PZ, and|P?| calculated with the
same input parameters as for figure 2 are plotted in figure 3, in which the total polarization
P? is rotated from (0, —v/2Py, 0) to (0, ~/2Py, 0) across the Bloch-type wall, though the
magnitude ofP? varies withx,. Like the Ising-type wall, the Bloch-type wall has no shear
deformation, and only)2, which is related toP? and P# by equation (18), varies along

the x,-axis. The stresses required to sustain such a walb4rerZ, ando, and they are
functions of P? and P. In fact, the coexistence a#? and PZ within the wall layer tends

to produce a shear deformation within the wall plane, but this tendency is resisted by the
shear stress”.

Figure 4. The arrangement of a twinned ‘V-shaped’ crystal in orthorhombic ferroelectric
perovskites. The twin boundary is a (100)°90all.

4. The 90 wall

The 90 wall of ferroelectric perovskites connects two domains whose polarization vectors
are nearly perpendicular to each other. Thé #l@main walls in the tetragonal phase
are along{11Q} lattice planes, but in the orthorhombic phase, they are parallel to the
{100} planes. A (100) 90wall separating two domains with polarizatioRy, — Py, 0) and

(Po, Po, 0), respectively, is shown in figure 4. For the Q1D structure of the wall, the space
profile of the polarization only depends on the space variahplein this caseV - P =0
yields P, = Py. Then the boundary conditions are

lim P3(x1) = 0 lim P>(x1) = £P,. (29)
x1—>+00 x1—> 00
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Similarly to the case for the 18Qwall, the strain compatibility of the 90wall requires
three constant strain components in space:

€22 = €, €33 = €, €23 = 0. (30)

Consequently, the elastic energy of equatiol) @nd the coupling energy of equationc)2
are rewritten as

C11
Fo = — ¢ty + c1zlea + ecers + 2can(efy + efy) (312)
and
F,. = —qll(e‘llpoz + EaPZZ + ecP32) — 412 [eaPSz + e('P22 + ell(P22 + P\?’z)]

— 2q44Po(e12P2 + e13P3). (31b)
In figure 4, the equilibrium conditions of the stress tensor for the wallarer;; ; = 0
(i, j= 1,2, 3), which lead tas11 = 012 = 013 =0, or

e 2 b guah? + P = 1 p2
e11 = — [—c1alea + €) + quP§ + qu2(P; + P3)] = A1+ Ba(P; + P3)

g .
e1p=—PP, =C1P> e13= C1Ps.

2c44

Substituting equation (32) into equation (31) and inserifhg= (P, P>, P3) into equation
(2a), one can write the total free-energy density of thé @@ll as

F= %‘(Pfl + P2)) + E1P? + E2P2 + E3(P3 + PY) + E4PZP?
+ a111(P + P9) + a112P§ PZ(P§ + P3) (33)
where the constants; are defined as

E1= a1+ a12PE + a112P) — 2c4aC? — quieq — qualeq + A1)
E> = E1+ (11 — q12)(eq — e¢)

, 1 (34)
E3 = a1+ a112Py — 541231
E4 = a2 + a123P¢ — q12B1.
The Euler equations given as equation (23) now become
g44P2,11 = 2E1P2 =+ 4E3P23 =+ 2E4P2P32 =+ 60[111P25 + 4(X112P23P32 + 20{112P2P; (35a)
94aP311 = 2E2P3 + 4E3P3 + 2E4 P2 P3 + 60111 P5 + 20112P5 P3 + 4ay12P2 P3. (350)
Again, equations (3 and (3%®) have the kink solution
sinh(x1/82)
Py(x1) = Py . P3(x1) =0 (36)
V g2 + coshx1/82)
where
P
2 2P¢ — E3/a111
(37)

1 844
So=— [ ————.
Po 60[111PO — 2E3
For this solution, it can be seen from equation (32) thgat = 0, and the only two
inhomogeneous strain components agg(x;) = A1 + BlP32(x1) and e;p = C1Pr(x1).
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The continuous variation af;, from —e, to ¢, indicates that the V-shaped bicrystal plotted

in figure 4 is actually rounded at the wall centre, like to the ferroelastic domain wall in
NdPsO14 [18]. The associated nonzero stress components required to support the Q1D
structure of the wall are given by

022(x1) = (c12B1 — q11 — q12) [P (x1) — P{]
033(x1) = (c12B1 — q12) [sz(xl) - Poz] .

Because the constani;; and Qi, defined in equation (7) are positive and negative,
respectively for most perovskite ferroelectrics; the decreasgPgf;)| from Py to zero
upon approaching; = 0 has a tendency to produce shrinkage and expansion of the wall
lattice alongx, andx; respectively. Therefore, the two normal stresggsandos; required
to keepesy and ezz constant across the wall have opposite sigis: > 0 andosz < 0.
Moreover, it can be seen that the shape of the bicrystal divided by thev&lDis rounded
automatically in thex;x,-plane without any shear stress being applied.

The above solution for the 90wall shows that the polarization has the fodh =
[Po, P2(x1),0]. This kind of wall can still be considered as an Ising-type wall. Since
equations (38) and (3®H) have the same forms as equationsaj2dnd (24), they may also
have the Bloch-type solutio®? = [Py, Pf (x1), P§ (x1)], where P2 (x1) and P2 (x;) are
nonzero within the wall layer. For the latter polarization configuration, the inhomogeneous
strain components aref;, e5,, ande?; (see equation (32)), and the stresses required to
sustain the wall are}, 045, andogs.

(38)

Ts

T2

13

N

1

Y

Yr)

Figure 5. A schematic representation of a 220vin in orthorhombic perovskites. The shaded
interface indicates the uncharged wall. In thex3 coordinate systemP = (Py, 0, Py) and
P’ = (0, Py, —Po).

5. The 120 wall

The strain compatibility of different orientation domains gives two kinds of planar wall
called ‘W walls’ [13] in the orthorhombic phase of perovskite ferroelectrics: one is the 90
wall, and the other is the 12@vall which is strictly parallel to th¢110} lattice planes (the
electrically uncharged wall). The configuration of a (110) L2@ll is shown in figure 5,
in which the x,x;x3 coordinate system is generated by rotating the,x3 system along
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x3 by 45°. For the Q1D wall structure which varies only along (abbreviated as), the
boundary conditions expressed in therxz coordinate system are

lim P = (Po, 0, Pp) lim P = (0, Py, — Pp) (39&)
r——00 r—00
and
ea 0 ¢ eec 0 O
lim {e[j} S ( [ O) lim {e,‘j} = ( €, —@,«) . (3%)
r—>—00 e, r—>00 e,

In the x,x,x3 coordinate system, the polarization componeRtsand P; are expressed in
terms of P; and P, as

P, = (Pi+ P))/V2 Py = (P, — Py)/V?2 (40)

and the strain componentg; are given by equation (9). The charge-neutral condition of
the 120 wall, V - P = 0, now becomes®, = Py/+/2, and the boundary conditions @
and P, are

lim P, = +Py/v/2 lim P; = FP,. (41)
r—4o00 r—£00

The strain compatibility relations require three constant strain compongpisyss, and
153, across the wall. Then from equations (9) andh3® follows that

Nss = (ea + ec)/z N33 = €4 Ns3 = —61/\/5. (42)

The other three strain components are position dependent, and their boundary conditions
are

lim N3 = :Fet/‘/E

r—=+oo

rﬂToo Nrs = E(eq — ec)/z (43)
lim Nrr = (ea + 6‘c)/z'

r—=+oo

Inserting equation (42) into equation (9) and then inserting equation (9) into equati@ns (2
and (Z), one has

~

¢ é_(eq +e.) + 4erze
Fel = f”fr + a Z a Nrr + (C]_]_ —_ ClZ)nfs + 26447733 (44&)
FC = —<qT+P02 + %P_;z + 6112P32> Nrr — \/EQA4P0P37’]r3 — ‘/5(6111 — qu)POPsnrs
G+ (eq +ec) q12(eq + e.)
- “2 - PSz B az - P?»z _‘111“3(11032 —6]12€aPS2+ \/éq44e,PsP3.

(44b)

The three zero-stress components derived from equation (16) are,powy,, ando,3. By
differentiating F,; + F. in equation (44) with respect tg,,, n,,, andn,3, one obtains the
three position-dependent strain components

Nrr = A2 + BZP52 + C2P32

Nrs = B3PS (45)

n3 = C3Ps3
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where
éJrP()2 —C_(eq +e.) —4croe,
Az = =
26+
q_ 2
By = CAI— Cr = Aqlz (46)
Cy Cy
qi11 — 412 qas
B3 = ————P 3= Po.
V2(c11 — c12) 2v2¢44

Substituting equation (45) into equation (44) and taking into account equatiahstd
(40), one can eventually write the total free-energy density as

F = G1P? + G3P? + \/2qase, Py P + G4P* + GsP4 + GeP2P2 + %MPSG
20112+« s
where
6o11 —o1p 5, 1511 — o112,
Gy = P P,
1 oy + 4 0 + 16 0
i, ;i s
- S A2- (c11 —c12)B3 — Z(ea +e.) — qioe, (48a)
ar 200112 + 123 12
Gy=oa1+ 7P02 + 1—6P6‘ — 2644C§ — q?(ea +ec) — quieq — q1242 (480)
2011+ a2 150111 — o112, G-
Ga= p-Lp 48¢
4 2 + 8 0 2 02 (48c)
o
Gs = an + 2P = 2c, (480)
3 q_
Go = ara+ 2 P§ = %”‘POZ - %cz. (489)

It can be proved that the equilibrium equations for the °12@ll, obtained by inserting
equation (47) into equation (23), have similar forms to equation (24) and equation (35).
Like the 90 and 180 walls, the 120 wall also has two kinds of polarization configuration:
one is of Ising type and the other of Bloch type. Here we only give the Ising-type solution.
In figure 4, it is the polarization vectd?, = P;5+ Psk (parallel to the wall plane) that
varies from—(Po/~/2)3 + Pok to (Po/~/2)3 — Pok, wheres and k are unit vectors along
x; andxs, respectively. For the Ising type wall, the direction Bf is always parallel to
(1/+/2)§ — k, which means that

Py =—P3/v2 (49)
Then the total free-energy density in equation (47) becomes

s+ 2
F = H P2 + HyP} + H3PS + MP@ (50)
where theH,; are defined as
G
Hy = 71 + G2 — qaase;
Gy Geg
H=—+G — 51
2 2 + Gs + > (51)

330111 + 21112 + 20193
Hs = 32
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andg,, is defined by equation (22). In this case, the Euler equations reduce to

8rs + 2g44
2
in the x,x;x3 coordinate system. Subsequently, the kink solutionsPoand P; are

P _ p sinh(r/83)

Ps, = 2Hy P3 + 4H, P3 + 6H3 P2 (52)

P3(r) = — 0 (53)
V2 V43 + coshir/83)
where
PR
%7 2P2 — Hy/3Hj3
(54)

1 8rs + 2g44

5= —— [ Srs T L844
3= 2P\ 3PyHz — H,

On the basis of the above polarization profiles, thelependent strain components (r),
n,s(r), andn,3(r) can be quantified from equation (45). Furthermore, the stresses required
to sustain the Q1D structure of the 220all are

&g b .

ogs(r) = <IBZZ - 7C2 - C]12> [Pg (r)— Po]

0ya(r) = V2qas [ P3(r) — P§] (55)
C

033(r) = (%232 +c12C2 — q11 — %) [PZ(r) — P¢].

Here the normal stresses, andoss are present to resist the contraction and expansion of
the wall in the lateral directions, andxs, respectively. Compared with the Ising-type 180

and 90 walls, the Ising-type 120wall has an extra stress componety. This stress is
required to keep the shear strajpy constant across the wall (removal @f; may induce
interface disclinations). For a perfect crystal with free boundary conditions, the shear stress
o,3 is usually provided by the surface tension of the crystal while the normal stresses are
due to the internal elastic force.

6. Discussion and conclusions

On the basis on the LG theory, we have developed continuum models of the9D80and

120 domain wall structures in the orthorhombic phase of ferroelectric perovskites by taking
into account the elastic interactions and the gradient energy induced by the polarization
inhomogeneities. The models show that for an uncharged wall, the polarization component
normal to the wall interface always keeps constant across the transition layer, while the
component parallel to the wall has either an Ising-type profile or a Bloch-type profile.
Due to the strain—polarization interactions, the elastic strains within the wall layer are also
inhomogeneous, but the coherent wall keeps the lateral strains constant and permits no
variation of the shear deformation in the planes parallel to the wall interface. Such a
constrained state is sustained by position-dependent stresses.

In the framework of the LG theory, the solutions for $8®0°, and 120 walls
obtained from the preceding processes are exact, and describe fully the three-dimensional
configurations of the polarization, elastic strains, and clamping stresses. In particular, the
solutions depend only on the fifteen coefficients of the expansion series of equations (2)
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and (8). All of these coefficients correspond to certain macroscopic physical quantities of
perovskite ferroelectrics. In general, the elastic Gibbs free energy

GZF—ZGijeij (56)
i

is used to correlate the dielectric, piezoelectric, and elastic properties of the paraelectric and
ferroelectric phases. For single-domain perovskiesnay be expressed as

_a12P2~|—anzP +a122P’ PzJF“mZP +°‘112ZPP4

i<j i#j
sk
+ af,sPY PIP§ — 11 o 5122611% ﬁ elzj
i<j i<j
2 Q12 2 2
- QllZGlIP > l##kan(f’j + P) — Q44;UijPin (57)

measured atonstant stresgdifferent from theas, o;; i, anda;j, of the clamped state; see
equation (2)), thes are the elastic compliance coefficients at constant polarlzatlon and the
Q;; have been defined in equation (4). Techniques for determiningithe;, o, andQ;;

(as well as their temperature dependence) have been described and discussed extensively
in, for example, references [26-28]: the dielectric stiffne$swhich depends linearly on
temperature can be obtain from the Curie—Weiss lawgfhando, are usually determined

by correlating them with the spontaneous polarization measured at the Curie point, and the
Q;; may be solved from the relations between the lattice deformation and the polarization
(see equation (3)). Provided that these coefficients are given, determination of the expansion
coefficients in equation (2) is as follows.

Since the original cubic structure of perovskites is centro-symmetric, oneihasxy .

For the stress-free state (i®; = 0), G and F are identical, which indicates from equations

(2), (5) and (57) thaty; = «f; and ;s = of,. Furthermore, becaus@;; and the
second-order elastic constants(or the elastic compliance coefficienf’s) can be measured
directly, the electrostrictive coefficienis; are obtainable from equation (4). As the, g;;,

ande;; are known, one may obtai; from equation (5). Finally, Cao [29] has correlated

the polarization gradient coefficiengs; in equation (8) with the dispersion surface of the
soft mode of perovskites, and on the basis of this correlation, the three gradient coefficients
can, in principle, be determined through measurements along the three principal directions
in inelastic neutron scattering experiments.

In most cases, all of the coefficients in equations (2) and (8) exgemtre weakly
temperature dependent. Therefore, for a semi-quantitative description of the walls, these
macroscopic quantities are measured near the Curie point and assumed constant in all of the
ferroelectric phases. In this manner, the results show that the increasepdn heating can
lead to an increase of the wall width and a decrease of the wall energy, which is a common
feature for ferroic domain walls and has been verified by experiments [17, 18, 30]. For a
more accurate quantification, the variation of the higher-order coefficients with temperature
must be considered. Fortunately, by correlating the dielectric, piezoelectric, and elastic
properties of the perovskites, these parameters in the orthorhombic phase can be extrapolated
from the values obtained near the Curie point [27, 28]. When the temperature dependence
of all of the coefficients is known, one can deduce the exact profiles of the polarization,
strains, and clamping stresses for a domain wall at any temperature point. At present, the
experimental results concerning the domain wall structures in orthorhombic perovskites are

where theaf, of, of; are the dielectric stiffness and high-order stiffness coefficients
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sparse, but some direct measurements performed on the walls in the tetragonal phase may
prove the validity of the present theory. For example, Zhang, Hashimoto, and Joy [31] have
studied the 90walls in tetragonal BaTi@using electron holography. Comparing figure 3
of reference [31] and figure 2 of the present paper, one can find that the polarization profile
obtained experimentally is, indeed, very similar to the kink solutions of equations (25),
(36), and (53) instead of the equatiégh = Pytanhx/§) which is for second-order phase
transitions. (Note that the Ising-type walls in the tetragonal phase also have kink solutions
according to the present theory.)

It should be noted that in a uniaxial ferroelectric crystal, the {L8bmain walls
are always of Ising type. However, since the spontaneous polarization of ferroelectric
perovskites can take more than one components along the thd€e axes of the cubic
structure, the domain walls may appear in either Ising-type or Bloch-type configurations. In
fact, the possible existence of the Bloch-type domain wall is a unique property of perovskite
crystals. For such a interfacial structure, the polarization component along the direction
parallel to the wall spirals from the original direction to the opposite direction across the
wall layer. Generally, the wall structure with relatively lower energy is thermodynamically
stable. The existence of Bloch-type walls in perovskites may be proved by the fact that the
180 walls in BaTiG; are directly visible between crossed polarizers even with no external
electric field normal to the polar axis applied [32]. Since the Ising-type® 188lls are
invisible from considerations of lattice symmetry, the 18@lls observable under polarized
light are believed to be of Bloch type [25].

The most complicated domain wall in orthorhombic perovskites is then@dl whose
orientation cannot be described by a crystallographic plane (theva) [13]. This kind
of wall occurs only within the high-temperature range or in significantly inhomogeneous
crystals. But, by the same procedure as presented in this paper, one can obtain similar results
for the detailed wall structure in a suitably transformed coordinate system. In this sense, the
above treatment for 1809C°, and 120 walls provides a generai®-model for predicting
domain wall structures in real perovskites associated with the first-order ferroelectric phase
transitions, and it can be extended to describe any kinds of twin structure in all of the three
ferroelectric phases.
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